We Live in a Very Fortunate Universe

by Tim Barnett

The fine-tuning of the universe for the existence of life is fascinating to me. That’s why I was so excited to find A Fortunate Universe: Life in a Finely Tuned Cosmos, co-authored by astrophysicists Geraint Lewis and Luke Barnes, under my Christmas tree. This book provides the most up-to-date scientific evidence for the fine-tuning of the universe for life. But what is truly unique about this book is that it presents the data at a popular level so that the material is accessible to anyone interested in this topic.

As I read the book, I was awestruck by the finely-tuned constants and conditions that had to be just right to get a universe that would permit life. I’d like to give you a taste of some of this evidence. Specifically, I want to show you how the masses of three fundamental particles of the universe are set for life. If they were changed by the slightest amount, there could be no life anywhere in the universe. Unfortunately (at least for some), this requires you to understand a little particle physics.

Now stay with me. The reward at the end is worth it. Trust me. Here we go.

Particle Physics 101

Underlying all of the complexity of this universe—bees, computers, people, stars, and planets—is the simplicity of a few particles. At the most basic level, the world is built from a handful of building blocks. At one time, we believed that the smallest building blocks were atoms. However, today we know that atoms are made up of subatomic particles: neutrons, protons, and electrons. Protons, which are positively charged, and neutrons, which have no charge, compose the nucleus of the atom. Negatively charged electrons orbit the nucleus.

Are you starting to remember your high school chemistry class yet? Some of you are probably still trying to forget it…


We Live in a Very Fortunate Universe | Stand to Reason